AI 團隊整合導入 AWS SageMaker 流程

Flow

團隊困境

如果團隊未來想把機器學習推廣成一個服務,可以讓開發者帶入不同的參數進行客製化的學習,最終拿到學習過的 Model。或是團隊資源不夠,想要使用大量的 GPU 資源來加速 AI Model Training,這時就是要朝向使用第三方資源像是 AWS SageMaker 來進行整合。而在團隊內會分成機器學習團隊,及後端團隊,前者是專門進行資料分析及 AI Model 演算法及程式碼開發,後者則是專攻全部工作流程,從產生測試資料,前置準備,到 Training Model,及將產生的結果發送給開法者,這整段流程會由後端團隊進行串接。所以當我們要用第三方服務時 AWS SageMaker,對於機器學習團隊來說,要將整個環境打包成容器模式,並且符合 SageMaker 所規定的格式,過程相當複雜,而為了讓開發環境統一,我們使用了容器技術 (Docker Container) 來進行 SageMaker 串接,本篇會教大家如何整合 SageMaker 流程,讓機器學習團隊可以專注於 Model 流程開發,而不需要花時間在整合容器技術並符合 SageMaker 格式。

[Read More]